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Exceptional collections on toric Fano threefolds and

birational geometry

Hokuto Uehara

Abstract

Bondal’s conjecture states that the Frobenius push-forward of the
structure sheaf OX generates the derived category Db(X) for smooth
projective toric varieties X .

Bernardi and Tirabassi exhibit a full strong exceptional collection
consisting of line bundles on smooth toric Fano 3-folds assuming Bon-
dal’s conjecture. In this article, we prove Bondal’s conjecture for
smooth toric Fano 3-folds and improve upon their result using bira-
tional geometry.
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1 Introduction

A full strong exceptional collection of a triangulated category can be thought
of as the categorical analogue of a finite orthonormal basis of a vector space.
For the derived category Db(X) of coherent sheaves on a smooth projective
variety X, such a collection rarely exists, but if it exists, the derived category
Db(X) is equivalent to the derived category Db(modA) of the category
modA of finitely generated modules over a finite dimensional algebra A.

For any smooth toric DM orbifold X, Kawamata shows that there is
a full, but not necessarily strong, exceptional collection on X [18]. Fur-
thermore full strong exceptional collections on toric varieties are studied by
many people (cf. [3, 8, 9, 10, 11, 15, 20, 17]).

We can define an endomorphism Fm (m ∈ Z>0) called the Frobenius
map on any toric variety over a field of any characteristic (some people also
call it a multiplication map). It is also known that for smooth complete
toric varieties X, Fm∗OX splits into line bundles and Thomsen [24] finds an
algorithm to compute the set of all direct summands of it. We denote the
set by DX for a sufficiently divisible integer m. On the other hand, Bon-
dal’s conjecture predicts that the set DX classically generates the derived
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collection
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category Db(X). So sometimes, for instance in the case |DX | = rankK(X),
it becomes a candidate of a full strong exceptional collection consisting of
line bundles on smooth projective toric varieties X.

Bernardi and Tirabassi exhibit such collections on all eighteen smooth
toric Fano 3-folds by using Frobenius maps [3]. Using birational geometry,
we obtain a stronger result. Precisely we show the following.

Theorem 1.1. For sixteen smooth toric Fano 3-folds X over C, the set DX

becomes a full strong exceptional collection (after choosing an appropriate
order). For the remaining two cases, (4) and (11) in Theorem 3.1, we present
a proper subset of DX which becomes a full strong exceptional collection.

Note that this theorem implies that Bondal’s conjecture is true for smooth
toric Fano 3-folds. The strategy to prove Theorem 1.1 is as follows;

Step 1. Let f : X → Y be an extremal birational contractions between
smooth toric Fano 3-folds. Assume that DX forms a full strong exceptional
collection. Then so is DY . This is done by Lemmas 5.1 and 6.4.

Step 2. By Step 1, it is enough to show that DX forms a full strong ex-
ceptional collection only for (birationally) maximal Fano 3-folds X, namely
in (11), (17) and (18) in Theorem 3.1. Unfortunately, in the case (11), DX

does not form a strong exceptional collection. Instead we can find a subset
Dnef of DX which becomes a full strong exceptional collection. Then, as in
Step 1, an inductive argument works in the case X in (11).

Step 3. To check the strongness of the chosen set in Step 2, it is enough
to check the dual of line bundles in the set are nef (Lemma 3.8). This
is easily done by observing Figure 5. To check the fullness in Step 2, we
prove Bondal’s conjecture in our situation by rather tedious, but elementary
calculation. This step is done in §4 and §5.

In [3], Bernardi and Tirabassi check a similar statement to Theorem 1.1
only in the cases (9), (11), (14), (15) and (16) separately, since the existence
of a full strong exceptional collection, not necessarily coming from DX , was
already known in the remaining cases. In their proof of the strongness,
a rather long and explicit calculation is presented, using the result in [7].
Moreover they deduce fullness for their collections only after assuming the
conjecture of Bondal (see Remark 3.7).

Dubrobin conjectures that for a smooth projective variety X, the quan-
tum cohomology ofX is semi-simple if and only ifX is a smooth Fano variety
with a full exceptional collection. Although his conjecture turns out to be
wrong, it is still believed that there is a relationship between the existence
of full exceptional collections on X and its quantum cohomology (cf. [2].)
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Furthermore several people conjectured that every smooth toric Fano vari-
ety has a full strong exceptional collection consisting of line bundles [7, 8].
But recently Efimov provides a counterexample to this conjecture [12]. At
least in the 3-dimensional case, the conjecture is true by Theorem 1.1.

It should be pointed out that there is a smooth projective toric (not
Fano) surface which does not possess any full strong exceptional collections
consisting of line bundles ([14, 15]), and it is also worthwhile to mention
that there is a smooth toric Fano variety X such that we cannot choose full
strong exceptional collections from the set DX [20].

Because our exceptional collections consist of line bundles, the corre-
sponding quivers, Gram matrices etc., should be rather easy to be computed.
Furthermore our collection exhibits nice properties, as it behaves well as in
Step 1 above.

The structure of this paper is as follows: In §2, we give some basic
definitions on the derived categories of coherent sheaves. In §3, we explain
several notion on toric varieties and cite some useful results for smooth
toric Fano 3-folds. We also explain how to determine the set DX , following
Thomsen. In §4, we actually determine it for several toric varieties. In §5,
we prove Bondal’s conjecture for maximal smooth toric Fano 3-folds. In §6,
we accomplish Step 1 above and give the proof of Theorem 1.1. In Theorem
6.3 we also obtain a similar result in the surface case to Theorem 1.1.

Notation and conventions For a smooth variety X, we denote the
bounded derived category of coherent sheaves on X by Db(X). T -invariant
is an abbreviation of torus invariant. For objects E ,F ∈ Db(X), we define

Homi
X(E ,F) := HomDb(X)(E ,F [i]).

We work over C for simplicity.
We denote by M(l,m) the space of l ×m matrices defined over Z, and

tA is the transpose of a matrix A ∈ M(l,m)

2 Generators of derived categories

In this section, we give several basic definitions on triangulated categories
and derived categories of coherent sheaves.

Definition 2.1. Let S = {Si} be a set of objects in a triangulated category
D.

(i) We denote by 〈S〉 the smallest triangulated subcategory of D con-
taining all Si, closed under isomorphisms and direct summands. For
a triangulated subcategory C of D, we denote by C⊥ the full tri-
angulated subcategory of D whose objects F satisfy the property
HomD(C,F) = 0 for all C ∈ C.
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(ii) We say that S classically generates D if 〈S〉 = D. We also call S a
classical generator of D.

(iii) We say that S generates D if 〈S〉⊥ = 0. We also call S a generator of
D.

Let X be a smooth complete variety over C.

Definition 2.2. (i) An object E ∈ Db(X) is called exceptional if it sat-
isfies

Homi
X(E , E) =

{

C i = 0

0 otherwise.

(ii) An ordered set (E1, . . . , En) of exceptional objects is called an excep-
tional collection if the following condition holds;

Homi
X(Ek, Ej) = 0

for all k > j and all i. When we say that a finite set S of objects is an
exceptional collection, it means that S forms an exceptional collection
after choosing an appropriate order.

(iii) An exceptional collection (E1, . . . , En) is called strong if

Homi
X(Ek, Ej) = 0

for all k, j and i 6= 0.

(iv) An exceptional collection (E1, . . . , En) is called full if

〈E1, . . . , En〉 = Db(X).

Remark 2.3. If X has a full exceptional collection consisting of n excep-
tional objects, the rank of its K-group K(X) is n ([5]). Furthermore it is
known that the rank of K-group is the number of the maximal cones in the
fan for smooth projective toric varieties (cf. [13, Theorem in §5.2.]). For
3-dimensional smooth projective toric varieties X, we can see rankK(X) =
2ρ(X) + 2.

3 Toric varieties

Throughout this section, we use the following notation. Let N = Zn be a
lattice of rank n and M its dual. A fan ∆ in NR = N ⊗Z R consists of
a finite number of rational strongly convex polyhedral cones in NR, and it
determines a toric variety X = X(∆). We define V(∆) to be the set of
primitive generators of 1-dimensional cones in ∆.
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For a cone σ in ∆, put Rσ = C
[

χu
∣

∣ u ∈ M ∩ σ∨
]

, where
{

χu
∣

∣

u ∈ M ∩ σ∨
}

is a basis of C-vector space Rσ. We can define an obvious
multiplication on R as usual (cf. [13, page 15]). Then the affine toric variety
Uσ corresponds to σ is just SpecRσ, and the rational function field of the
toric varieties X is just C

[

χu
∣

∣ u ∈ M
]

.

3.1 Double Z-weight

According to [21], we introduce the notion of doubly Z-weighted triangula-
tions of a 2-sphere. For simplicity, we restrict to the case n = 3, namely
N = Z3 below. We can obviously identify the set of half lines starting from
the origin 0 of NR with

S2 := (NR\{0})/R>0.

Let
π : NR\{0} → S2

be the projection. We call π(v) a rational point of S2 corresponding to a
primitive element v ∈ N , and v is called the N -weight of the rational point
π(v). For a cone σ = R≥0v1 + · · ·+ R≥0vs ∈ ∆ (vi ∈ V(∆)), π(σ\{0}) is a
convex spherical cell in S2 with rational points π(v1), . . . , π(vs) as vertices.
Thus for a fan ∆, we get a convex spherical cell decomposition

{

π(σ\{0}
∣

∣ σ ∈ ∆
}

of π(|∆|\{0}).
Suppose that a fan ∆ is complete and non-singular, which is equivalent

to the condition that the corresponding toric variety X = X(∆) is proper
and smooth. Then we get a simplicial cell decomposition of S2. Moreover,
for each 3-dimensional cone σ ∈ ∆, the corresponding spherical 2-simplex
π(σ\{0}) has vertices whose N -weights v1,v2,v3 form a Z-basis of N . For
each 2-dimensional cone τ ∈ ∆, there are exactly two 3-dimensional cone
σ, σ′ ∈ ∆ such that σ ∩ σ′ = τ . In this case, the sets {v,v2,v3} and
{v′,v2,v3} of N -weights for the vertices of π(σ\{0}) and π(σ′\{0}), re-
spectively, are Z-bases of N . Moreover we have

v + v′ + α2v2 + α3v3 = 0

for αj ∈ Z uniquely determined by τ . For

ρ = R≥0v, ρ
′ = R≥0v

′, ρj = R≥0vj ∈ ∆ (j = 2, 3) ,

let D,D′,Dj are the corresponding T -invariant divisors. Then it is known
(cf. [21, page 81]) that we have

αj = (Dj ·D2 ·D3). (1)
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We then endow the edge π(v2), π(v3) with the double Z-weight α2, α3, where
we place α2 (resp. α3) on the side of the vertex π(v2) (resp. π(v3)) as in
Figure 1. For simplicity, here and henceforth we always denote a rational
point π(v) by its N -weight v in figures of double Z-weights.

v3

v2

α2

α3

v

v′

Figure 1: Double Z-weight

We have normal bundle sequences;

0 →NC/D2
→ NC/X → ND2/X |C → 0

0 →NC/D3
→ NC/X → ND3/X |C → 0,

where C ∼= P1 is the T -invariant curve corresponding to the cone τ . Then
we know as above NC/Dj

∼= OP1(−αj) and NDj/X |C ∼= OP1(−αj′), where
{j, j′} = {2, 3}. Combining both sequences, we conclude that they split and
so we have

NC/X
∼= OP1(−α2)⊕OP1(−α3). (2)

We show in Figure 2 the change of double Z-weights under the blowing-
up along a T -invariant curve [21, page 90]. The segment attached to a
oval corresponds to the curve, and the vertex with a dark gray small circle
corresponds to the exceptional divisor. Figure 2 will be used to find the
centers and the exceptional divisors of blowing-ups in Figure 4.
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j
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d

e
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−1 −10 0

a

b− a

a− b

b

Figure 2: Change of double Z-weights under the blowing-up
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3.2 Toric Fano 3-folds

Smooth toric Fano 3-folds are classified as follows.

Theorem 3.1 ([1, 26]). Up to isomorphism, there are 18 distinct Fano
3-folds. Among them, each of (11), (12), (14), (15), (16) and (18) below is
obtained from one of the others by a finite succession of equivariant blowing-
ups.

(1) P3.

(2) P2 × P1.

(3) The P1-bundle P(OY ⊕OY (1)) over Y = P2.

(4) The P1-bundle P(OY ⊕OY (2)) over Y = P2.

(5) The P2-bundle P(OY ⊕OY ⊕OY (1)) over Y = P1.

(6) P1 × P1 × P1.

(7) The P1-bundle P(OY ⊕OY (f1 + f2)) over Y = P1 × P1, where f1 and
f2 are fibers of the two projections from Y to P1.

(8) P(OY ⊕OY (f1 − f2)) in the notation of (7).

(9) P1 × Σ1 for the Hirzeburch surface Σ1.

(10) The P1-bundle P(OY ⊕OY (s+ f)) over Y = Σ1, where f is a fiber of
the P1-bundle on Σ1 and s is the minimal section with s2 = −1.

(13) P1 × Y2, where Y2 is the toric del Pezzo surface obtained from P2 by
the equivariant blowing-up at two of the T -invariant points.

(17) P1 × Y3, where Y3 is the toric del Pezzo surface obtained from P2 by
the equivariant blowing-up at the three T -invariant points.

Their birational relations are described in Figure 3. There are just three
maximal Fano 3-folds, (11), (17) and (18), with respect to birational rela-
tions.

The corresponding eighteen doubly Z-weighted triangulations of S2 are
given in Figure 4. A segment attached to an oval corresponds to the T -
invariant smooth curve of the center of a blowing-up appearing in Figure 3.
The number, like ”(5)” in Figure 4(1), near the oval is the number of the
Fano 3-fold obtained from the blowing-up.

For instance, the oval in Figure 4(1) means that if we blow up along
the curve corresponding to the segment with the oval, we obtain the Fano
3-fold in (5). Of course, in this case, by symmetry we can choose any other
segments, or any other T -invariant smooth curves, as the blowing-up center.
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(17)(17)

(13)(13)(13)

(6) (7) (8) (9)(9) (10) (11)(11) (12)

(18)

(14) (15) (16)

(2) (3) (4) (5)

(1)

Figure 3: Every arrow means the equivariant blowing-up along a T -invariant
curve and every dotted arrow means the equivariant blowing-up along a T -
invariant point.

A dark gray small circle at a vertex corresponds to the exceptional T -
invariant divisor of a blowing-down appearing in Figure 3. The number, like
”(1)” in Figure 4(5), near the small circle is the number of the Fano 3-fold
obtained from the blowing-down.

For instance, the small circle in Figure 4(5) means that if we blow down
the T -invariant divisor corresponding to the vertex with the small circle, we
obtain the Fano 3-fold in (1).

In Figure 4, we do not indicate the point of a blowing-up center, or the
exceptional divisor of a blowing-down to a point, since we do not need it
afterwards.

3.3 Frobenius push-forward

In this subsection, we explain how to compute the direct summands of Frobe-
nius push-forward of line bundles on smooth complete toric varieties, follow-
ing Thomsen [24].

Fix a positive integer m and we define a new lattice N ′ as N ′ := 1
mN

and denote its dual by M ′, We consider the natural inclusion fm : N →֒ N ′,
which sends a cone in NR to the cone with the same support on N ′

R. Thus
fm induces the finite surjective toric morphism Fm : X(∆) → X(∆) which
we call a Frobenius (or multiplication) map. We put

V(∆) = {v1, . . . ,vl},

andDi to be the T -invariant divisor corresponding to the 1-dimensional cone
generated by vi. Henceforth, without otherwise specified, we always assume
that ∆ is a complete smooth fan, i.e. X = X(∆) is a smooth complete toric
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Figure 4: Doubly Z-weighted triangulations of S2 [21, page 91]
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variety. We put
A = t(v1, . . . ,vl) ∈ M(l, n).

If D =
∑l

j=1 bjDj is a Q-divisor, we define

⌈D⌉ :=
l

∑

j=1

⌈bi⌉Dj ,

where for any real number x, ⌈x⌉ is the integer defined by x ≤ ⌈x⌉ < x+ 1.
Similarly, we define

⌊D⌋ :=
l

∑

j=1

⌊bj⌋Dj ,

where for every x, ⌊x⌋ is the integer defined by x−1 < ⌊x⌋ ≤ x. KX denotes
the canonical divisor −

∑l
j=1Dj so that ωX = OX(KX).

For a maximal cone

σ = 〈vi1 , . . . ,vin〉 ∈ ∆ (i1 < · · · < in)

and a matrix

B = t(b1, . . . , bl) ∈ M(l,m) (l ≥ in,m ≥ 1),

we define
Bσ = t(bi1 , . . . , bin) ∈ M(n,m).

Then note that for a maximal cone σ and the matrix A defined above,
Aσ belongs to GL(n,Z), since X is a smooth toric variety.

Put
P p
m = { t(u1, . . . , up) ∈ Zp

∣

∣ 0 ≦ ui < m}

for a positive integer p. For u ∈ Pn
m, w = t(w1, . . . , wl) ∈ Zl and a

maximal cone σ ∈ ∆, define qm(u,w, σ) ∈ Zl, rm(u,w, σ) ∈ P l
m and

qmi (u,w, σ) ∈ Z as

AA−1
σ (u−wσ) +w = mqm(u,w, σ) + rm(u,w, σ) (3)

and

qm(u,w, σ) = t(qm1 (u,w, σ), . . . , qml (u,w, σ)).

Define
Du,w,σ(= Dm

u,w,σ) :=
∑

qmi (u,w, σ)Di.
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Remark 3.2. (i) Suppose that

a− b = Au

for a, b ∈ Zl and u ∈ Zn. Then we know that

l
∑

i=1

aiDi −
l

∑

i=1

biDi = div χu.

In particular the divisors
∑l

i=1 aiDi and
∑l

i=1 biDi are linearly equivalent.

(ii) We have div χA−1
σ q|Uσ =

∑n
i=1 qiDi|Uσ for any q = t(q1, . . . , qn) ∈ Zn.

Example 3.3. Put R = Rσ for an n-dimensional non-singular strongly
convex rational cone σ in N . For a smooth affine toric variety U = SpecR,
the multiplication map Fm induces a C-algebra map

F#
m : R → R χu 7→ χmu.

When we regard a quotient field K of R as an R-module via the map F#
m ,

we denote it by Fm∗K. For a sub-R-module L of K, we also define a sub-
R-module Fm∗L of Fm∗K, which is just L as an abelian group.

Then the module Fm∗(Rχ−A−1
σ w) for some w ∈ Zn is freely generated

by the set
{

χA−1
σ (u−w)

∣

∣ u ∈ Pn
m

}

,

namely, we have an isomorphism

Fm∗(Rχ−A−1
σ w) ∼=

⊕

u∈Pn
m

RχA−1
σ (u−w),

since we also have the following description;

R = k
[

χA−1
σ ei

∣

∣ i = 1, . . . , n
]

,

where
{

e1, . . . ,en
}

is the standard basis of M .

The isomorphism on an affine piece in Example 3.3 can be globalized as
follows in (ii).

Lemma 3.4. Fix a vector w = t(w1, . . . , wl) ∈ Zl and a maximal cone
σ ∈ ∆.

(i) [24] The vector bundle

⊕

u∈Pn
m

OX(Du,w,σ)

does not depend on the choice of a maximal cone σ.
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(ii) [24] We have

⊕

u∈Pn
m

OX(Du,w,σ) ∼= Fm∗OX(
∑

wiDi).

(iii) For a line bundle L ∈ PicX, we have

(Fm∗L)
∨ ∼= Fm∗(L

∨ ⊗ ω1−m
X ) ∼= Fm∗(L

∨ ⊗ ωX)⊗ ω−1
X .

Proof. (iii) The second isomorphism follows from the projection formula.
The first one is a direct consequence of the Grothendieck–Verdier duality
(cf. [16, page 86]), but we give another proof by the use of the above result.
Put L = OX(

∑

wiDi). We have L∨ ⊗ ω1−m
X = OX(

∑

(m− 1−wi)Di). Put
u′ = (m− 1) t(1, 1, . . . , 1). Then, for all u ∈ Pn

m, we can see

qi(u
′
σ0

− u,u′ −w, σ0) =⌊
tvi(u

′
σ0

− u− u′
σ0

+wσ0
)− wi +m− 1

m
⌋

=⌊−
tvi(u−wσ0

) + wi + 1

m
⌋+ 1

=− ⌈
tvi(u−wσ0

) + wi

m
+

1

m
⌉+ 1

=− qi(u,w, σ0).

The last equality holds because, in general, the equality ⌈ k
m + 1

m⌉−⌊ k
m⌋ = 1

is true for k ∈ Z. This gives the first isomorphism by (iii).

Below for simplicity, we often identify two isomorphic line bundles. For a
T -invariant divisor D and an integer m > 0, we define sets of (isomorphism
classes of) line bundles;

D(D)m := {L ∈ PicX
∣

∣ L is a direct summand of Fm∗OX(D) }

and
D(D) := ∪m>0D(D)m.

Convention

(i) We may assume that v1, . . . ,vn forms a standard basis of Zn and put
σ0 = 〈v1, . . . ,vn〉. We often omit σ0 in the notation as qm(u,w)(:=
qm(u,w, σ0)), Du,w(:= Du,w,σ0

) and so on.

(ii) For a zero divisor D = 0 or a zero vector w = 0, we simply denote
D(0) by D (or DX if we need to specify the base variety X) and
qm(u)(= qm(u,0)). (In fact, as a consequence of Lemma 3.5(i) and
(ii), we have D = D(0)m for a sufficiently divisible integer m.)

12



We take σ in (3) to be σ0, then (3) becomes the following simpler form

A(u−wσ0
) +w = mqm(u,w) + rm(u,w), (4)

and hence we have

qmi (u,w) = ⌊
tvi(u−wσ0

) + wi

m
⌋. (5)

Lemma 3.5. Fix a T -invariant divisor D =
∑

wiDi and put w = t(w1, . . . , wl).

(i) [24] The set D(D) is finite.

(ii) Put D′ :=
∑

w′
iDi, where

w′
i :=

{

0 for i with wi ≥ 0

−1 for i with wi < 0.

Take m > 0 satisfying −1 ≤ wi

m < 1 for any i. Then OX(D′) ∈
D(D)m. Furthermore we have D(D′) ⊂ D(D)m for sufficiently divisi-
ble integers m > 0.

(iii) We have D(D)m ⊂ D(lD)lm for any l,m ∈ Z>0.

Proof. (i) Since the set
{ t

viu

m

∣

∣ u ∈ Pn
m,m ∈ Z>0

}

is bounded and
t
viwσ0

−wi

m →
0 as m → ∞, the set of integers

{

qmi (u,w)
∣

∣ u ∈ Pn
m,m ∈ Z>0

}

is finite.
Consequently, so is the set D(D).

(ii) For any wσ0
∈ Zn, there is a vector u′ ∈ Zn such that mu′ +wσ0

∈
Pn
m. Put u := mu′ +wσ0

. Then we can see

qmi (u,w) =⌊
tvi(u−mu′ −wσ0

) +wi

m
⌋+

m tviu
′

m

=⌊
wi

m
⌋+ tviu

′ = w′
i +

tviu
′,

which means the divisor Du,w is linearly equivalent to D′. Thus OX(D′) ∈
D(D)m.

Take an element L ∈ D(D′) and suppose that L ∈ D(D)m for some m
satisfying −1 ≤ wi

m < 1 for any i. Then L ∈ D(D)km for all k > 0, since
Fkm∗OX(D) = Fm∗Fk∗OX(D). This gives the last assertion.

(iii) By definition, we have qmi (u,w) = qlmi (lu, lw), which implies the
conclusion.

My optimistic conjecture is as follows;

Conjecture 3.6. Let X be a smooth complete toric variety. Then Fm∗OX(D)
is a classical generator of Db(X) for any T -invariant divisors D and a suf-
ficiently large integer m.

13



In order to prove Conjecture 3.6, by Lemma 3.5(ii) it is essential to show
it for T -invariant divisors D =

∑

wiDi with wi = 0 or −1.

Remark 3.7. Bondal announced in [4] that Conjecture 3.6 is true for the
case D = 0. Although the proof is not available so far, several people
have already used this statement (cf. [3, 8, 9, 11]). In this article, we refer
this statement as Bondal’s conjecture. Bondal’s conjecture is solved for 2-
dimensional toric Deligne–Mumford stacks in [22].

Lemma 3.5 will not be used afterwards, but an idea to solve Bondal’s
conjecture in §4.2 and 4.3 comes from it.

The following is sometimes powerful when we show that Fm∗OX is a
tilting object.

Lemma 3.8. Take a line bundle L on X.

(i) If L−1 is nef, then we have ExtiX(L, Fm∗OX) = 0 for i > 0.

(ii) [23] If L⊗ω−1
X is ample, then we have ExtiX(Fm∗OX ,L) = 0 for i > 0.

Proof. (i) By adjunction, we have ExtiX(L, Fm∗OX) = H i(X,L−m). But
the last term vanishes for i > 0, since X is toric.

(ii) We have ExtiX(Fm∗OX ,L) = H i(X,F ∗
m(L⊗ω−1

X )⊗ωX), which van-
ishes by the Kodaira vanishing theorem.

We have the following easy lemma. Because of it, the facts that the set
DX forms a full strong exceptional collection and that Fm∗OX is a tilting
generator for sufficiently large m are equivalent.

Lemma 3.9. (i) Let us consider a finite set of line bundles {Lk} satisfy-
ing Li 6∼= Lj for i 6= j. Assume that the vector bundle E =

⊕

Lk is a
tilting generator of Db(X), namely it satisfies the following conditions:

(1) Homi
X(E , E) = 0 for i 6= 0. Such an object E in Db(X) is called

a tilting object.

(2) 〈E〉⊥ = 0 in Db(X), that is, E is a generator of Db(X).

Then the set {Li} forms a full strong exceptional collection.

(ii) Suppose that we have a full strong exceptional collection {Lk} on X.
Then their direct sum

⊕

k Lk is a tilting generator of Db(X).

Proof. The most parts of the statements are direct consequences of the def-
initions. I explain only how to show the fullness in (i).

Note that the condition (1) implies that the set {Lk} is a strong excep-
tional collection. Then we have a semi-orthogonal decomposition (cf. [16,
page 25]) of Db(X) into 〈{Lk}〉

⊥ and 〈{Lk}〉. Since E is a generator,
〈{Lk}〉

⊥ = 0 which implies that the strong exceptional collection {Lk} is
full.

14



4 Examples

In this section, we determine the set D for various smooth toric varieties.

4.1 Maximal toric del Pezzo surface

Let us consider the toric surface X = Y3 which is obtained by the blow up
of P2 at the three T -invariant points. Namely, X is the maximal toric del
Pezzo surface with respect to birational relations. We put

v1 =

(

1
0

)

,v2 =

(

0
1

)

,v3 =

(

−1
1

)

,

v4 =

(

−1
0

)

,v5 =

(

0
−1

)

,v6 =

(

1
−1

)

∈ Z2.

Then we know that D2,D4,D6 are exceptional divisors of X → P2. Note
that D1 +D6 ∼ D3 +D4 and D2 +D3 ∼ D5 +D6.

For u =

(

x
y

)

∈ P 2
m, we have

qm(u) =

















⌊ x
m⌋

⌊ y
m⌋

⌊−x+y
m ⌋

⌊−x
m ⌋

⌊−y
m ⌋

⌊x−y
m ⌋

















=

















0
0

⌊−x+y
m ⌋

⌊−x
m ⌋

⌊−y
m ⌋

⌊x−y
m ⌋

















.

Then we obtain

D =
{

OX(−D5 −D6),OX(−D3 −D4),OX(−D4 −D5),

OX(−D3 −D4 −D5),OX (−D4 −D5 −D6),OX

}

.

These are dual to the line bundles which appear in a full strong exceptional
collections on X in [19]. In particular, D forms a full strong exceptional
collection.

4.2 Fano 3-fold in (11)

Take the Fano 3-fold X in (11). Put

v1 =





1
0
0



 ,v2 =





0
1
0



 ,v3 =





0
0
1



 ,

v4 =





1
0
−1



 ,v5 =





0
0
−1



 ,v6 =





−1
−1
2



 ∈ Z2,
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Figure 5: Fano 3-folds in (11) and (18)

as in Figure 5.

For u =





x
y
z



 ∈ P 3
m, we have

qm(u) =

















⌊ x
m⌋

⌊ y
m⌋

⌊ z
m⌋

⌊x−z
m ⌋

⌊−z
m ⌋

⌊−x−y+2z
m ⌋

















=

















0
0
0

⌊x−z
m ⌋

⌊−z
m ⌋

⌊−x−y+2z
m ⌋

















.

Therefore we have

D =
{

OX ,OX (−D6),OX (−2D6),OX (−D5),OX (−D5 −D6),OX (−D5 − 2D6),

OX(−D4 −D5 −D6),OX(−D4 −D5),OX(−D4 −D5 +D6)
}

.

Then by the equation (1) we can read from Figure 5 that for all L ∈ D

except OX(−D4 − D5 + D6), L−1 is nef, hence Lemma 3.8 implies that
ExtiX(L, Fm∗OX) = 0 for i > 0. Put

Dnef := D\{OX (−D4 −D5 +D6)}.

We shall prove in §5.2 that 〈Dnef 〉 = Db(X). Consequently the set Dnef

becomes a full strong exceptional collection.
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4.3 Fano 3-fold in (18)

Take the Fano 3-fold in (18). Put

v1 =





1
0
0



 ,v2 =





0
1
0



 ,v3 =





0
0
1



 ,v4 =





0
−1
1



 ,

v5 =





0
−1
0



 ,v6 =





0
0
−1



 ,v7 =





0
1
−1



 v8 =





−1
1
0



 ∈ Z2,

as in Figure 5. For u =





x
y
z



 ∈ P 3
m, we have

qm(u) =

























⌊ x
m⌋

⌊ y
m⌋

⌊ z
m⌋

⌊−y+z
m ⌋

⌊−y
m ⌋

⌊−z
m ⌋

⌊y−z
m ⌋

⌊−x+y
m ⌋

























=

























0
0
0

⌊−y+z
m ⌋

⌊−y
m ⌋

⌊−z
m ⌋

⌊y−z
m ⌋

⌊−x+y
m ⌋

























.

Therefore we have

D =
{

OX(−iD8),OX(−D6 −D7 − iD8),OX(−D4 −D5 − iD8),

OX(−D5 −D6 −D7 − iD8),OX (−D5 −D6 − iD8),

OX(−D4 −D5 −D6 − iD8)
∣

∣ i = 0, 1
}

.

By the equation (1), we can read from Figure 5 that that L−1 is nef for all
L ∈ D. Hence by Lemma 3.8 implies that ExtiX(Fm∗OX , Fm∗OX) = 0 for
all m ≫ 0, i > 0.

4.4 Fano 3-fold in (8)

Take the Fano 3-fold X in (8). Put

v1 =





1
0
0



 ,v2 =





0
1
0



 ,v3 =





0
0
1



 ,

v4 =





−1
0
−1



 ,v5 =





1
−1
0



 ,v6 =





−1
0
0



 ∈ Z2.
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For u =





x
y
z



 ∈ P 3
m, we have

qm(u) =

















⌊ x
m⌋

⌊ y
m⌋

⌊ z
m⌋

⌊−x−z
m ⌋

⌊x−y
m ⌋

⌊−x
m ⌋

















=

















0
0
0

⌊−x−z
m ⌋

⌊x−y
m ⌋

⌊−x
m ⌋

















.

Therefore we have

D =
{

OX ,OX(−D5),OX(−D4),OX(−D4 −D5),OX(−D4 −D6),

OX(−D4 −D5 −D6),OX (−2D4 −D6),OX(−2D4 −D5 −D6)
}

.

For all of line bundles L ∈ D, we can see that L−1 is nef by a similar method
to one above, hence Lemma 3.8 implies that ExtiX(Fm∗OX , Fm∗OX) = 0 for
i > 0. This result contradicts the result in [23, page 32].

5 Exceptional collections on maximal toric Fano
3-folds

In this section, we prove Bondal’s conjecture for maximal smooth toric Fano
3-folds. Combining this with the results in §4, we see that DX (respectively,
Dnef) is a full strong exceptional collection in the cases Fano 3-folds in (17)
and (18) (respectively, (11)).

Lemma 5.1. Let f : X → Y be a proper morphism between smooth vari-
eties. Suppose that an object E is a generator of Db(X) and OY is a direct
summand of the object Rf∗OX . Then Rf∗E is also a generator of Db(Y ).

Proof. Put RHomY (Rf∗E ,F) = 0 for some F ∈ Db(Y ). Then by the ad-
jointness Rf∗ ⊣ f !, we obtain ωX ⊗Lf∗(F ⊗ω−1

Y ) = f !F = 0, which implies

that Lf∗F = 0. Since F is a direct summand of Rf∗Lf
∗F = F

L
⊗ Rf∗OX ,

we obtain the assertion.

In Lemma 5.1, main examples in mind are the following: Let X and Y
be smooth projective toric varieties.

(i) For the toric blow up f : X → Y , by Rf∗OX = OY and the commu-
tativity F Y

m ◦ f = f ◦ FX
m , we have Rf∗F

X
m∗OX = F Y

m∗OY . Hence if Fm∗OX

is a generator, then so is Fm∗OY .
(ii) For the Frobenius morphism Fm on X, Fm∗E is a generator of Db(X)

for a generator E of Db(X). Note that OX is indeed a direct summand of
Fm∗OX .
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5.1 Exceptional collection on the Fano 3-fold in (17)

Let us consider the Fano 3-foldX in (17) which is the product of the maximal
toric del Pezzo surface Y3 in §4.1 and a projective line P1. The following
must be well-known.

Lemma 5.2. Let Y and Z be smooth projective varieties. Suppose that E

and F are tilting generators of Db(Y ) and Db(Z) respectively. Then E
L

⊠ F
is also a tilting generator of Db(Y × Z).

Proof. We can check

RΓ(Y × Z, E
L

⊠ F) = RΓ(Y, E)
L
⊗ RΓ(Z,F).

Hence we have

Homi
Y×Z(E

L

⊠ F , E
L

⊠ F) ∼=
⊕

j+k=i

Homj
Y (E , E) ⊗Homk

Z(F ,F),

which implies that E
L

⊠ F is tilting. The fact E
L

⊠ F is a generator directly
follows from [6, Lemma 3.4.1].

For the toric case, we know that F Y×Z
m∗ OY×Z

∼= F Y
m∗OY ⊠FZ

m∗OZ . More-
over we see in §4.1 that Fm∗OY3

is a tilting generator on the maximal toric
del Pezzo surface Y3 and m ≫ 0. It follows that DX is a full strong excep-
tional collection. Here we leave to readers the proof of the fact that DP1 is
a full strong exceptional collection on P1.

5.2 Exceptional collection on Fano 3-fold in (11)

Take the Fano 3-fold X in (11). We use the same notation as in §4.2. Let
us recall that

Dnef =
{

OX ,OX(−D6),OX(−2D6),OX (−D5),OX(−D5 −D6),

OX(−D5 − 2D6),OX(−D4 −D5 −D6),OX(−D4 −D5)
}

.

The next is the aim of §5.2.

Proposition 5.3. Let X be the toric Fano 3-fold in (11). Then the set
Dnef forms a full strong exceptional collection.

First we determine the set D(ω−3
X )m for sufficiently large m. For u =
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



x
y
z



 ∈ P 3
m and w =







−1
...

−1






∈ Z6, we have

qm(u,−3w) =





















⌊ (x−3)+3
m ⌋

⌊ (y−3)+3
m ⌋

⌊ (z−3)+3
m ⌋

⌊ (x−3)−(z−3)+3
m ⌋

⌊−(z−3)+3
m ⌋

⌊−(x−3)−(y−3)+2(z−3)+3
m ⌋





















=

















0
0
0

⌊x−z+3
m ⌋

⌊−z+6
m ⌋

⌊−x−y+2z+3
m ⌋

















.

Thus we have

qm4 (u,−3w) =











1 if x+ 3 ≥ z +m

0 if z +m > x+ 3 ≥ z

−1 if z > x+ 3

qm5 (u,−3w) =

{

0 if 6 ≥ z

−1 if z > 6

qm6 (u,−3w) =































2 if 2z + 3 ≥ x+ y + 2m

1 if x+ y + 2m > 2z + 3 ≥ x+ y +m

0 if x+ y +m > 2z + 3 ≥ x+ y

−1 if x+ y > 2z + 3 ≥ x+ y −m

−2 if x+ y −m > 2z + 3.

By tedious computation, we can see D(ω−3
X )m = D ∪D

′, where

D
′ =

{

OX(−D4 −D5 + 2D6),OX (−D5 +D6),

OX(−D4 − iD6),OX (D4 − jD6)
∣

∣ i = 0, 1 and j = 1, 2
}

.

Note that there are linear equivalences;

D1 +D4 ∼ D6, D2 ∼ D6, D3 + 2D6 ∼ D4 +D5. (6)

Claim 5.4. 〈Dnef〉 =
〈

D(ω−3
X )m

〉

.

Proof. We shall check that L ∈ 〈Dnef 〉 for L = OX(−D4−D5+D6) and all
L ∈ D

′ below. Note that this implies that 〈Dnef〉 =
〈

D(ω−3
X )m

〉

, since

D(ω−3
X )m = D ∪D

′ = Dnef ∪ {OX(−D4 −D5 +D6)} ∪D
′.

Since D1 ∩D2 ∩D6 = ∅, we have an exact sequence

0 →OX(−D1 −D2 −D6)

→OX(−D1 −D2)⊕OX(−D2 −D6)⊕OX(−D1 −D6)

→OX(−D1)⊕OX(−D2)⊕OX(−D6) → OX → 0.
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Combining this with (6), we have an exact sequence

0 →OX(D4 − 3D6) → OX(D4 − 2D6)
⊕2 ⊕OX(−2D6)

→OX(D4 −D6)⊕OX(−D6)
⊕2 → OX → 0. (7)

Similarly, since D2 ∩D4 ∩D6 = ∅, we have an exact sequence

0 →OX(−D4 − 2D6) → OX(−D4 −D6)
⊕2 ⊕OX(−2D6)

→OX(−D4)⊕OX(−D6)
⊕2 → OX → 0. (8)

Since D3 ∩D4 = ∅, we have an exact sequence

0 → OX(−D3 −D4) → OX(−D3)⊕OX(−D4) → OX → 0.

Using (6), we have an exact sequence

0 →OX(−2D4 −D5 + 2D6)

→OX(−D4 −D5 + 2D6)⊕OX(−D4) → OX → 0. (9)

Similarly, since D1 ∩D5 = ∅, we have an exact sequence

0 →OX(D4 −D5 −D6)

→OX(D4 −D6)⊕OX(−D5) → OX → 0. (10)

(i) Tensoring OX(−D4−D5+D6) with (7), we obtain an exact sequence

0 →OX(−D5 − 2D6) → OX(−D5 −D6)
⊕2 ⊕OX(−D4 −D5 −D6)

→OX(−D5)⊕OX(−D4 −D5)
⊕2 → OX(−D4 −D5 +D6) → 0.

We have already known that all line bundles in the sequence exceptOX(−D4−
D5 +D6) belong to 〈Dnef〉. Thus so does OX(−D4 −D5 +D6).

3

(ii) Tensoring OX(−D5 +D6) with (8), we obtain an exact sequence

0 →OX(−D4 −D5 −D6) → OX(−D4 −D5)
⊕2 ⊕OX(−D5 −D6)

→OX(−D4 −D5 +D6)⊕OX(−D5)
⊕2 → OX(−D5 +D6) → 0.

We have already known from (i) that all line bundles in the sequence except
OX(−D5 +D6) belong to 〈Dnef〉. Thus so does OX(−D5 +D6).

(iii) Tensoring OX(−D4 − D5 + 2D6) with (7), we obtain an exact se-
quence

0 →OX(−D5 −D6) → OX(−D5)
⊕2 ⊕OX(−D4 −D5)

→OX(−D4 −D5 +D6)
⊕2 ⊕OX(−D5 +D6) → OX(−D4 −D5 + 2D6) → 0.

3This proves the fact 〈Dnef 〉 = 〈D〉 , which has been already observed in [3, Proposition
3.2].
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We have already known from (i) and (ii) that all line bundles in the sequence
except OX(−D4 −D5 + 2D6) belong to 〈Dnef 〉. Thus so does OX(−D4 −
D5 + 2D6).

(iv) Take j = 1, 2. Tensoring OX(D4−jD6) with (9), we obtain an exact
sequence

0 →OX(−D4 −D5 + (2− j)D6)

→OX(−D5 + (2− j)D6)⊕OX(−jD6) → OX(D4 − jD6) → 0.

We have already known from (i) and (ii) that all line bundles in the sequence
except OX(D4 − jD6) belong to 〈Dnef 〉. Thus so does OX(D4 − jD6).

(v) Take i = 0, 1. Tensoring OX(−D4 − iD6) with (10), we obtain an
exact sequence

0 →OX(−D5 − (i+ 1)D6)

→OX(−(i+ 1)D6)⊕OX(−D4 −D5 − iD6) → OX(−D4 − iD6) → 0.

We have already known that all line bundles in the sequence exceptOX(−D4−
iD6) belong to 〈Dnef 〉. Thus so does OX(−D4 − iD6).

Therefore we know that 〈Dnef〉 =
〈

D(ω−3
X )m

〉

.

Now we can prove Proposition 5.3.

Proof. We directly see by computation that

Dnef ⊂ D(ω−1
X )m ⊂ D(ω−2

X )m ⊂ D(ω−3
X )m,

which is more or less expected by Lemma 3.5. It is also known that
⊕3

i=0 ω
−i
X

is a generator ([25, Lemma 3.2.2]), since ω−1
X is very ample. Lemma 5.1

implies that
〈

D(ω−3
X )m

〉⊥
= 0. Thus we can see from Claim 5.4 that

〈Dnef〉
⊥ = 0.

Combining the result in §4.2 with Lemma 3.9(i), we complete the proof.

5.3 Exceptional collection on Fano 3-fold in (18)

Take the Fano 3-fold in (18), and use the same notation as in §4.3. Recall
that

D =
{

OX(−iD8),OX(−D6 −D7 − iD8),OX(−D4 −D5 − iD8),

OX(−D5 −D6 −D7 − iD8),OX (−D5 −D6 − iD8),

OX(−D4 −D5 −D6 − iD8)
∣

∣ i = 0, 1
}

.

We can prove the following.
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Proposition 5.5. Let X be the toric Fano 3-fold in (18). Then the set D
forms a full strong exceptional collection.

First we want to find all elements of D(ω−3
X )m for sufficiently large m.

For u =





x
y
z



 ∈ P 3
m and w =







−1
...
−1






∈ Z8, we have

qm(u,−3w) =































⌊ (x−3)+3
m ⌋

⌊ (y−3)+3
m ⌋

⌊ (z−3)+3
m ⌋

⌊−(y−3)+(z−3)+3
m ⌋

⌊−(y−3)+3
m ⌋

⌊−(z−3)+3
m ⌋

⌊ (y−3)−(z−3)+3
m ⌋

⌊−(x−3)+(y−3)+3
m ⌋































=



























0
0
0

⌊−y+z+3
m ⌋

⌊−y+6
m ⌋

⌊−z+6
m ⌋

⌊y−z+3
m ⌋

⌊−x+y+3
m ⌋



























.

Thus we have

qm4 (u,−3w) =











1 if z ≥ y +m− 3

0 if y +m− 3 > z ≥ y − 3

−1 if y > z + 3

qm5 (u,−3w) =

{

0 if 6 ≥ y

−1 if y > 6

qm6 (u,−3w) =

{

0 if 6 ≥ z

−1 if z > 6

qm7 (u,−3w) =











1 if y ≥ z +m− 3

0 if z +m− 3 > y ≥ z − 3

−1 if z > y + 3

qm8 (u,−3w) =











1 if y ≥ x+m− 3

0 if x+m− 3 > y ≥ x− 3

−1 if x > y + 3.

Hence by tedious computation, we can see D(ω−3
X )m = D ∪D

′, where

D
′ =

{

OX(−D4 − iD8),OX(−D5 − iD8),OX (−D6 − iD8),OX (−D7 − iD8),

OX(−D4 −D5 +D7 + iD8),OX (D4 −D6 −D7 − iD8),

OX(−D4 −D5 +D8),OX (−D5 −D6 +D8),

OX(−D4 −D5 −D6 +D8)
∣

∣ i = 0, 1
}

.
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Since D contains several line bundles of the form L and L ⊗ OX(D8),
Claim 5.6 gives that L ⊗OX(iD8) ∈ 〈D〉 for all i ∈ Z.

Claim 5.6. If L and L⊗OX(D8) ∈ 〈D〉, then we have L⊗OX(iD8) ∈ 〈D〉
for all i ∈ Z.

Proof. Note that there are linearly equivalences;

D1 ∼ D8, D2 +D4 +D5 ∼ D7 +D8, D3 +D4 ∼ D6 +D7. (11)

We have

0 → OX(−D1 −D8) → OX(−D1)⊕OX(−D8) → OX → 0.

Combining this with (11), we have

0 → OX(−2D8) → OX(−D8)⊕OX(−D8) → OX → 0.

By tensoring L ∈ PicX, we obtain the claim.

Claim 5.7. 〈D〉 =
〈

D(ω−3
X )m

〉

.

Proof. We shall check that L ∈ 〈D〉 for all L ∈ D
′ below. First note that

Claim 5.6 implies the last three line bundles in D
′ belong to 〈D〉. We take

an arbitrary integer i ∈ Z below.
(i) We have exact sequences:

0 → OX(−D5 −D6 −D7 + iD8) →OX(−D6 −D7 + iD8)

→ OD5
(−D6 + iD8) → 0,

0 → OX(−D5 −D6 + iD8) → OX(−D6 + iD8) → OD5
(−D6 + iD8) → 0.

Hence OX(−D6 + iD8) ∈ 〈D〉, since

OX(−D5−D6−D7+iD8),OX (−D5−D6+iD8),OX (−D6−D7+iD8) ∈ 〈D〉 .

Similarly we obtain OX(−D5 + iD8) ∈ 〈D〉.
(ii) We have exact sequences:

0 → OX(−D3 −D4 −D5 + iD8) →OX(−D3 −D4 + iD8)

→OD5
(−D4 + iD8) → 0,

0 → OX(−D4 −D5 + iD8) → OX(−D4 + iD8) → OD5
(−D4 + iD8) → 0.

Since the line bundles

OX(−D3 −D4 −D5 + iD8) ∼= OX(−D5 −D6 −D7 + iD8),

OX(−D3 −D4 + iD8) ∼= OX(−D6 −D7 + iD8)
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and
OX(−D4 −D5 + iD8)

belong to 〈D〉 by (11), we have OX(−D4 + iD8) ∈ 〈D〉.
(iii) We have exact sequences:

0 → OX(−D2 −D6 −D7 + iD8) →OX(−D2 −D7 + iD8)

→ OD6
(−D7 + iD8) → 0,

0 → OX(−D6 −D7 + iD8) → OX(−D7 + iD8) → OD6
(−D7 + iD8) → 0.

Since we can see from (11) that

OX(−D2 −D6 −D7 + iD8) ∼= OX(−D4 −D5 −D6 + (i+ 1)D8) ∈ 〈D〉 ,

OX(−D2 −D7 + iD8) ∼= OX(−D5 −D6 + (i+ 1)D8) ∈ 〈D〉 ,

OX(−D6 −D7 + iD8) ∈ 〈D〉 ,

we know that OX(−D7 + iD8) ∈ 〈D〉 .
(iv) We have exact sequences:

0 → OX(−D2 −D3 −D7 + iD8) →OX(−D2 −D3 + iD8)

→ OD7
(−D2 + iD8) → 0,

0 → OX(−D2 −D7 + iD8) → OX(−D2 + iD8) → OD7
(−D2 + iD8) → 0.

Since we have

OX(−D2 −D3 −D7 + iD8) ∼= OX(−D5 −D6 −D7 + (i+ 1)D8) ∈ 〈D〉 ,

OX(−D2 −D3 + iD8) ∼= OX(−D5 −D6 + (i+ 1)D8) ∈ 〈D〉 ,

OX(−D2 −D7 + iD8) ∼= OX(−D4 −D5 + (i+ 1)D8) ∈ 〈D〉

by (11), we obtain

OX(−D4 −D5 +D7 + (i+ 1)D8) ∼= OX(−D2 + iD8) ∈ 〈D〉 .

(v) We have exact sequences:

0 → OX(−D2 −D3 −D4 + iD8) →OX(−D3 −D4 + iD8)

→ OD2
(−D3 + iD8) → 0,

0 → OX(−D2 −D3 + iD8) → OX(−D3 + iD8) → OD2
(−D3 + iD8) → 0

Since we have

OX(−D2 −D3 −D4 + iD8) ∼= OX(−D4 −D5 −D6 + (i+ 1)D8) ∈ 〈D〉 ,

OX(−D3 −D4 + iD8) ∼= OX(−D6 −D7 + iD8) ∈ 〈D〉 ,

OX(D2 −D3 + iD8) ∼= OX(−D5 −D6 + iD8) ∈ 〈D〉

by (11), we obtain OX(D4 −D6 −D7 + iD8) ∼= OX(−D3 + iD8) ∈ 〈D〉.
Hence we know that 〈D〉 =

〈

D(ω−3
X )m

〉

.

Then by a similar argument to one given in §5.2, we obtain Proposition
5.5.
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6 Birational contractions and tilting objects

Lemma 6.1. Let (f, ϕ) : (X,∆X) → (Y,∆Y ) be a T -equivariant extremal
birational contraction between smooth projective toric varieties. Choose a
maximal cone σ in ∆X such that ϕ(σ) is a cone in ∆Y . For any u ∈ Pn

m,
we denote a divisor DX

u,0,σ on X (resp. DY
u,0,ϕ(σ) on Y) by DX

u
(resp. DY

u
).

Then we have f∗OX(DX
u
) = OY (D

Y
u
). In particular,

DY =
{

f∗LX

∣

∣ LX ∈ DX

}

.

and
OX(DX

u
) = f∗OY (D

Y
u
)⊗OX(aE),

where a ≥ 0 and E is the exceptional divisor of f .

Proof. From the commutativity Fm ◦ f = f ◦ Fm, we obtain

⊕

u∈Pn
m

OY (D
Y
u
) = Fm∗OY = Fm∗f∗OX = f∗Fm∗OX =

⊕

u∈Pn
m

f∗OX(DX
u
).

Fix some u1 ∈ Pn
m. By the above equalities, the canonical inclusion and

projection, let us define the maps

αu′ : OY (D
Y
u1
) →֒

⊕

u∈Pn
m

OY (D
Y
u
) =

⊕

u∈Pn
m

f∗OX(DX
u
) ։ f∗OX(DX

u′)

and

βu′ : f∗OX(DX
u′) →֒

⊕

u∈Pn
m

f∗OX(DX
u
) =

⊕

u∈Pn
m

OY (D
Y
u
) ։ OY (D

Y
u1
)

for each u′ ∈ Pn
m. Then we have

∑

u′∈Pn
m

βu′ ◦ αu′ = id,

and hence βu2
◦αu2

6= 0 for some u2. Since EndY (OY (D
Y
u1
)) = C, we obtain

f∗OX(DX
u2
) = OY (D

Y
u1
). Apply a similar argument for

⊕

u∈Pn
m\{u2}

f∗OX(DX
u
) =

⊕

u∈Pn
m\{u1}

OY (D
Y
u
).

Then we can conclude that for all u ∈ Pn
m we have u′ ∈ Pn

m such that
f∗OX(DX

u
) = OY (D

Y
u′).

On the other hand, we have an inclusion f∗OX(DX
u
) →֒ OY (D

Y
u
), which

is isomorphic in codimension one. Thus it is isomorphic.
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Lemma 6.2. In the situation of Lemma 6.1, assume that f is a equivariant
blowing-up along a T -invariant smooth center C, and define d := dimE −
dimC, n := dimX and LY := f∗LX for some LX ∈ DX . Consider the
Leray spectral sequence

Ep,q
2 =Hp(Y,L⊗m

Y ⊗ ωY ⊗ Rqf∗OX((ma+ d)E))

=⇒ Ep+q =Hp+q(X, f∗(L⊗m
Y ⊗ ωX)⊗OX((ma+ d)E))

and assume furthermore that the vanishing

Homi
X(LX , Fm∗OX) = 0 (12)

holds for all i > 0.

(i) The vanishing
Homi

Y (LY , Fm∗OY ) = 0

holds for all i > 0 if and only if Ep,d
2 = 0 for all p < n−d−1 = dimC.

In particular, if d = n−1, namely if C is a point, this is automatically
true.

(ii) Assume that

H i(C,L⊗−m
Y ⊗ f∗OE(l − d− 1)) = 0 (13)

for i > 0 and all l with ma + d ≥ l, where we define OE(1) to be the

tautological line bundle of the Pd-bundle E → C. Then Ep,d
2 = 0 for

all p with p < n− d− 1.

Proof. (i) First of all, we have

Homi
X(LX , Fm∗OX) = Homi

X(F ∗
mLX ,OX)

=Hn−i(X,L⊗m
X ⊗ ωX)∨ = Hn−i(X,L⊗m

X ⊗ f∗ωY ⊗OX(dE))∨

=Hn−i(X, f∗(L⊗m
Y ⊗ ωX)⊗OX((ma+ d)E))∨

=(En−i)∨.

Hence (12) means that

Ep+q = 0 (14)

for all p+ q 6= n. Similarly it is easy to see that

(En−i,0
2 )∨ = Homi

Y (LY , Fm∗OY ).

Therefore what we have to show is that, under the assumption (14), Ep,0
2 = 0

for all p < n is equivalent to Ep,d
2 = 0 for all p < n − d− 1. More strongly,

we will see below Ep,d
2

∼= Ep+d+1,0
2 for p < n− d− 1.
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Note that

Rqf∗OE(lE) = 0 (15)

unless q = 0, d, since f |E : E → C is a Pd-bundle. We also have

f∗OE(lE) = 0

for all positive l. Then we have a short exact sequence

0 → L⊗m
Y ⊗ ωY ⊗ Rqf∗OX((l − 1)E) →L⊗m

Y ⊗ ωY ⊗ Rqf∗OX(lE)

→L⊗m
Y ⊗ ωY ⊗ Rqf∗OE(lE) → 0

(16)

for l ≥ 0 and all q. Hence by the vanishing Rqf∗OX = 0 for q 6= 0 and (15),
we conclude that

Ep,q
2 =Hp(Y,L⊗m

Y ⊗ ωY ⊗ Rqf∗OX((ma+ d)E))
∼=Hp(Y,L⊗m

Y ⊗ ωY ⊗ Rqf∗OX((ma+ d− 1)E))
∼= · · ·
∼=Hp(Y,L⊗m

Y ⊗ ωY ⊗ Rqf∗OX) = 0

for all p and all q 6= 0, d. Thus we have Ep,q
2

∼= Ep,q
d+1 for all p, q. Therefore

from (14) we obtain

Ep,d
2

∼= Ep,d
d+1

∼= Ep+d+1,0
d+1

∼= Ep+d+1,0
2

for p+ d+ 1 < n. Thus we obtain the conclusion.
(ii) By the duality,

Hn−d−1−p(C,L⊗−m
Y ⊗ f∗OE(l − d− 1))∨

=Hp(C,L⊗m
Y ⊗ (f∗OE(l − d− 1))∨ ⊗ ωC)

=Hp(Y,L⊗m
Y ⊗ ωY ⊗ Rdf∗OE(lE)).

By the assumption (13), the last one vanishes for all l, p with ma + d ≥ l

and p < n− d− 1. Then the vanishing of Ep,d
2 is a direct consequence of the

vanishing Rdf∗OX = 0 and (16).

Theorem 6.3. Let X be a toric del Pezzo surface. Then DX is a full strong
exceptional collection on X.

Proof. We have already checked the statement for the maximal del Pezzo
surface Y3 in §4.1. Then the statement for the other cases follows from
Lemmas 5.1 and 6.2.
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See also [15, Theorem 8.2] for an interesting result in this direction.

Lemma 6.4. In the notation in Lemma 6.2, assume that X and Y are
smooth toric Fano 3-folds and that the vanishing

Homi
X(LX , Fm∗OX) = 0 (17)

holds for all i > 0. Then the vanishing

Homi
Y (LY , Fm∗OY ) = 0

holds for all i > 0.

Proof. We divide the proof into two parts.

Step 1. By the last assertion in Lemma 6.2(i), we may assume that C ∼=
P1. There are primitive generators v1, . . . ,v5 of 1-dimensional cones in ∆Y

(and we sometimes regard them as generators of 1-dimensional cones in ∆X)
such that

• C is the T -invariant curve corresponding to the 2-dimensional cone
generated by v1 and v4, and

• the sets {v1,v4,v5}, {v1,v2,v4} and {v1,v2,v3} generate 3-dimensional
cones in ∆Y respectively.

• v3 is different from v4, but it may coincide with v5.

We have the following equalities

v2 + v5 + αv1 + βv4 = 0 and v3 + v4 + γv1 + δv2 = 0.

for some α, β, γ, δ ∈ Z (see Figure 6). Without the loss of generality, we
may assume that β ≥ α. Then we know that β ≥ 0, since α + β ≥ −1 by
the condition that Y is Fano [21, Page 89]. By these equalities, we have

v5 − βv3 + (1− βδ)v2 + (α− βγ)v1 = 0. (18)

Note that the set {v1,v2,v3} also generates a 3-dimensional cone, say
σ, in ∆X . So we can apply Lemma 6.1 for σ. Take u ∈ P 3

m such that
LY

∼= OX(DY
u,ϕ(σ)), and denote by Di(= DY

i ) (resp. D
X
i ) the prime divisors

on Y (resp. X) corresponding to vi, and we put qi to be the coefficient of
Di in a T -invariant divisor DY

u,ϕ(σ) on Y , namely we have

DY
u,ϕ(σ) = q1D1 + q2D2 + q3D3 + q4D4 + · · · .

We have

DX
u,σ = f∗DY

u,ϕ(σ) + aE, that is LX
∼= f∗LY ⊗OX(aE)
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v4

v1

v3 = v5 v2

ϕ

σ

ϕ(σ)

β

α
γ

δ

Figure 6: Divisorial contractions

for some a ≥ 0 as in Lemma 6.1.
To check (13) in the case C ∼= P1, it is enough to show

H1(C,L⊗−m
Y ⊗ f∗OE(ma− 1)) = 0. (19)

By choosing v1,v2,v3 as a basis of the lattice N ∼= Z3, we obtain from (18)
that

v5 =
t(βγ − α, βδ − 1, β) (20)

and q1 = qm1 (u, ϕ(σ)) = 0, and q2 = qm2 (u, ϕ(σ)) = 0. We also know by (2)
that NC/Y

∼= OC(α) ⊕OC(β). In particular, we have

f∗OE(i) ∼= SymiN∨
C/Y

∼= OC(−iα) ⊕OC(−(i− 1)α− β)⊕ · · · ⊕ OC(−iβ)

for i ≥ 0. We denote F a fiber of P1-bundle f |E : E → C. Then we
note that T -invariant prime divisors on X which intersect with F are only
DX

1 ,DX
2 ,DX

4 and DX
5 (and of course, F is contained in E). Thus we have

−a = aE · F = (DX
u,σ − f∗DY

u,ϕ(σ)) · F = DX
u,σ · F = q4,

since DX
2 · F = DX

5 · F = 0 and q1 = 0. Combining this with

degLY |C = (q4D4 + q5D5) · C = βq4 + q5,
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we have

degL⊗−m
Y ⊗OC((1−ma)β) = −m(βq4 + q5) + (1−ma)β

=−m(βq4 + q5) + (1 +mq4)β = −mq5 + β.

Since β ≥ α and β ≥ 0, we know that q5 ≦ 0 if and only if (19) is true for
m ≫ 0.

By (20), we have

q5 = ⌊
(βγ − α)x+ (βδ − 1)y + βz

m
⌋

for u = t(x, y, z) ∈ P 3
m. By observing Figure 4, we can see that

• in all cases, we have βδ − 1 ≦ 0,

• if β ≥ 2, X is in (11) and Y is in (4) in Theorem 3.1,

• if β = 1, βγ − α ≦ 0, and

• if β ≦ 0 (then actually β = 0), βγ − α ≦ 1.

Consequently, we obtain q5 ≦ 0, except the case X is in (11) and Y is in
(4).

Step 2. Let X be the Fano 3-fold in (11) and take LX ∈ DX . Then
we have seen in §4.2 that LX 6∼= OX(−D4 − D5 + D6) if and only if the
equality (17) holds for all i > 0. Note that v6 in Figure 5 plays the role
of v5 in Figure 6. Consequently we know that if LX is not isomorphic to
OX(−D4 − D5 + D6), then q5 ≤ 0 by the computation in §4.2. Then the
result follows.

Now we give the proof of Theorem 1.1.

Proof. In §5 we have already seen that Fm∗OX is a generator for maximal
smooth toric Fano 3-folds X. We have also seen in §5.1 and Proposition 5.5
that Fm∗OX is a tilting generator for the Fano 3-folds in (17) and (18). Then
Lemmas 5.1 and 6.4 imply that DX is a full strong exceptional collection
for all smooth toric Fano 3-folds except the cases (4) and (11).

For the case X in (11), we have seen in Proposition 5.3 that the set Dnef

is a full strong exceptional collection on X, and in §4.2 that

Homi
X(LX , Fm∗OX) = 0

holds for all i > 0 and all LX ∈ Dnef . Take the Fano 3-fold Y in (4) and
consider the blowing-up f : X → Y in Figure 3. Then Lemmas 5.1 and
6.4 implies that the subset

{

f∗LX

∣

∣ LX ∈ Dnef} of DY forms a full strong
exceptional collection on Y .
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